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Abstract--An inverse analysis utilizing the conjugate gradient method of minimization and the adjoint 
equation is used for simultaneously estimating the temperature-dependent thermal conductivity and heat 
capacity per unit volume of a material. No prior information is used for the functional forms of the 
unknown thermal conductivity and heat capacity in the present study, thus, it is classified as the function 
estimation by inverse calculation. The accuracy of the inverse analysis is examined by using simulated exact 
and inexact measurements obtained within the medium. Results show that the CPU time used on a VAX- 
9420 comp~Lter is within 1.4-4.46 s for all the test cases considered here. Moreover, excellent estimations 
on the ther~aal properties can be obtained when a good initial guess of either thermal conductivity or heat 

capacity is given before the inverse calculations. 

1. INTRODUCTION 

Thermal heat transport in materials is governed by 
thermophysical properties such as the thermal con- 
ductivity and heat capacity. The magnitude of these 
properties has a significant influence on the analysis 
of temperature distribution and heat flow rate when 
the material is heated and also on the analysis of 
thermal instability problems. Many theoretical and 
experimental methods for measuring the thermo- 
physical properties have been developed in the 
literature, they include, among others, the steady-state 
method [1], the probe method [2, 3], the periodic heat- 
ing method [4, 5], the least-squares method [6, 7] and 
the pulse heating method [8, 9]. However, all the above 
references belong ~Lo either steady-state or parameter 
estimations. The transient function estimation for 
simultaneously measuring temperature-dependent 
thermal conductivity and heat capacity per unit 
volume, using the conjugate gradient method in an 
inverse heat conduction problem, has never been 
examined in the open literature. 

The present work addresses the development of an 
efficient method (i.e. the conjugate gradient method) 
of analysis for measuring the temperature-dependent 
thermal conductivJlty and heat capacity of a material. 
Multiple spatial and temporal temperature measure- 
ments are found to be needed in transient heat con- 
duction experiments. Besides, no a priori information 
on the functional tbrms of the unknown quantities is 
necessary in inverse calculations. 

Alifanov [10] was among the early users of the 
conjugate gradient method. More recently, the 
method has been used for solving inverse problems of 
determining: the wall heat flux in laminar flow 
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through a parallel plate duct [11]; interface con- 
ductance between mold and casting during sol- 
idification [12]; interface conductance between 
periodically contacting surface [13]; wall heat fluxes 
of a hollow cylinder [14] ; and heat fluxes inside the 
cylinder of an internal combustion engine [15]. 

The conjugate gradient method is derived from per- 
turbation principles [10] and transforms the inverse 
problem to the solution of three problems, namely, 
the direct problem, the sensitivity problem and the 
adjoint problem, which will be discussed in the fol- 
lowing sections. 

2. DIRECT PROBLEM 

To illustrate the methodology for developing 
expressions for use in simultaneously determining 
unknown temperature-dependent thermal conduc- 
tivity, k (T)  and heat capacity per unit volume, C(T), 
in a material, we consider the following transient 
inverse heat conduction problem. A slab of thickness 
/S is initially at temperature T(x, 0) = To. For time 
? > 0, the boundary surface at X = 0 is subjected to a 
prescribed constant heat flux q~, while at boundary 
~z =/S, a constant heat flux 42 is removed from the 
slab by cooling. Figure 1 (a) shows the geometry and 
the coordinates for the one-dimensional physical 
problem considered here. 

If the following dimensionless quantities are defined 

x ~r To k 
x = - -  T = - -  T 0 = - -  k = - -  

/~ Zr  Tr kr  

q = - - q  t =  ? C = - -  
pC~£ ~ C~ 
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NOMENCLATURE 

C(T) or C(x, t) unknown heat capacity per 
unit volume 

J functional defined by equation (2) 
J '  gradient of functional defined by 

equations (12c) and (12d) 
k(T) or k(x,t) unknown thermal 

conductivity 
P direction of descent defined by 

equations (3c) and (3d) 
T(x,t) estimated dimensionless temperature 
AT(x, t) sensitivity function defined by 

equations (4) and (5) 
Y(x, t) measured temperature. 

Y conjugate coefficient 
6(') Dirac delta function 

convergence criteria 
2(x, t) Lagrange multiplier defined by 

equation (11) 
co random number. 

Superscript 
^ estimated values 

- dimensional parameters 
n iteration index. 

Greek symbols 
fl search step size 

Subscript 
r reference parameters. 

I. 
k=k(T) , C=C(T) ~q2 

(a) 

x; xi : j .  
x0 T 

(b) 

Fig. 1. (a) Physical problem ; (b) thermocouple arrangement 
for m points measurements. 

the dimensionless formulation of this transient heat 
conduction problem can be expressed as : 

~ x (  aT(x, t)~= c~T(x,t) 
k(T) Ox J C(T) ~t in0 < x < 1 

(la) 

. . . .  O T(x, t) 
- K t i )  ~xx - q' a tx = 0 (lb) 

. . . .  OT(x, t) 
-K(1)  ~x - q2 atx = 1 (lc) 

T(x, t )= To f o r t = 0  (ld) 

where the superscript ' ' and subscript 'r' denote the 
dimensional and referenced quantities, respectively. 

We assume To = Tr, i.e. To = 1 in the direct problem 
(1). The above quantities are assumed known while 
k(T) and C(T) are the unknown temperature-depen- 
dent thermal properties that are to be determined. 

When generating simulated temperature measure- 
ments T(x, t), i.e. given k(T) and C(T) to calculate 
temperature T(x, t), the direct problem (1) is non- 
linear since thermal properties are functions of tem- 
perature, therefore an iterative technique is needed in 
solving the problem with the finite-difference method. 
At this stage, k(T) and C(T) cannot be replaced by 
k(x, t) and C(x, t), since k(T) and C(T) are unknown 
before the direct problem calculations. However, 
when the temperatures T(x, t) are converged by an 
iterative technique under some specified initial and 
boundary conditions, the values of k and C at any 
time and position, (x, t), should be fixed because tem- 
peratures T(x, t) are known and fixed at any (x, t). 

Now, in the inverse calculations considered here, 
the measurement temperatures T(x, t) are assumed 
known either from numerical simulations or from real 
experiments. Once T(x, t) are obtained, there exist 
some unknown but fixed exact thermal properties that 
their values (a number), k(x, t) and C(x, t), at any 
specific time and position, (x, t), must satisfy in the 
Fourier equation to give this known temperature dis- 
tribution T(x, t). 

Therefore, in the inverse problem of function esti- 
mations, one can first guess the values of/~(x, t) and 
C(x, t), then by using the minimization procedure 
described in the following sections one can minimize 
the cost function J and finally find the exact k(x, t) 
and C(x, t). 

If the values of k(x, t) and C(x, t) can be predicted 
correctly before the direct problem calculation, it 
becomes a linear problem and the iterative procedure 
is not needed in computing the direct problem. 

The direct problem considered here is concerned 
with the determination of the medium temperature 
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when the thermal properties and the boundary  con- 
ditions at x = 0 and x = 1 are known. 

3. INVERSE PROBLEM 

For  the inverse problem, the thermal properties 
k(x, t) and C(x, t) are regarded as being unknown,  but  
everything else in ,equation (1) is known. In addition, 
temperature readings taken at some appropriate 
locations are considered available. 

Referring to Fig. 1 (b), we assumed that m sensors 
are used to record the temperature information to 
identify k(x, t) and C(x, t) in the inverse calculations. 
Let the temperature readings taken within these sen- 
sors over the time period tf be denoted by Y~(x~, t) =- 
Y~(t), i =  1 to m, where i =  1 and m always 
correspond to x = 0 and 1 (i.e. boundary measure- 
ments) respectively. Then the inverse problem can be 
stated as follows: by utilizing the above-mentioned 
measured tempe:cature data, YM), estimate the 
unknown thermal properties, k(x, t) and C(x, t), over 
ff. 

Since all the measured temperatures are used to 
compute the entire unknown functions for one period 
of time variation and no a priori information is avail- 
able on the functional forms ofk(x,  t) and C(x, t), the 
method used here may be classified as the function 
estimation in the whole-domain [16] for the deter- 
minat ion of the nonlinear thermal properties, k(T) 
and C(T). 

The solution of the present inverse problem is to be 
obtained in such a way that the following functional 
is minimized : 

J [k ( r ) ,  C(T)] - J[k(x, t), C(x, t)] 

= [Ti(xi, t) - Y~(xi, 012 dt (2) 
, = 0 i = 1  

here, T~ are the estimated temperatures in the slab at 
the measured locations x = x~. These quantities are 
determined from the solution of the direct problem 
given previously using an estimated/~(x, t) and C(x, t) 
for the exact k(x, t) and C(x, t) respectively. Here the 
superscript ' ^ '  denotes the estimated quantities. 

4. CONJUGP, TE GRADIENT METHOD FOR 
MINIMIZATION 

The following iterative process based on the con- 
jugate gradient method [10] is now used for the esti- 
mations ofk(x,  t) and C(x, t) by minimizing the above 
functional J[k(x, t), C(x, t)] 

[d+'(x,t) = fd(x,t)--flT, PT,(x,t) forn = 0, 1,2 . . . .  

(3a) 

(;"+l(x,t) = C~(.~:,t)-t~"ce~c(X,t) forn = 0, 1,2 . . . .  

where fl~, and fl~ are two search step sizes for k and C 
in going from iteration n to iteration n + 1, and P~, 
and P~ are the directions of descent (i.e. search direc- 
tion) for k and C given by 

PT,(x,t) = J£n(x,t)+yT, P~, l(x,t) (3c) 

P'~(x, t) = J~,"(x, t) + 7~cP"c ~(x, t) (3d) 

which are the conjugation of the gradient directions 
J£" and J~," at iteration n and the directions of descent 
P7, ~ and P U  ~ at iteration n -  1 for k and C respec- 
tively. The conjugate coefficients are determined from 

ix f 'f ( J ' ~ " ) 2 d t d x = o  =0 
y~ = withy ° = 0 (3e) 

fx f 'f ( J £ " + ' ) 2 d t d x = o  =0 

f x f / ( J c ' ) 2 d t d x = o  =0 
7~ = with 7 ° = 0. (3f) 

f~' f '~ ( J ~ ' ~ + ' ) 2 d t d x = o  =0 

We note that when 7" = 0 for any n, in equations 
(3e) and (3f), the direction of descent P"(x, t) becomes 
the gradient direction, i.e. the 'steepest-descent' 
method is obtained. 

To perform the iterations according to equation 
(3), we need to compute the step sizes/?~, and fl~ and 
the gradient of the functional J£" and J~". In order to 
develop expressions for the determination of these 
quantities, the 'sensitivity problem' and 'adjoint  prob- 
lem' are constructed as described below. 

5. SENSITIVITY PROBLEM AND SEARCH STEP 
SIZE 

Since the problem involves two unknowns, in order 
to derive the sensitivity problem for each unknown,  
we should perturb the unknowns one at a time. It 
is assumed that when k(x, t) undergoes a variation 
Ak(x, t), T(x, t) is perturbed by T+ ATk. Then replac- 
ing k by k + Ak and Tby T+ ATk in the direct problem, 
and subtracting from the resulting expressions the 
direct problem and neglecting the second-order terms, 
the following sensitivity problems for the sensitivity 
function ATk are obtained 

_ cOATk(X,t) for0 < x < 1 (4a) 
c~t 

- k (x ,  t) OAT~x, t) _ Ak(x, t) OT(x, t) 
Ox G X  

(3b) for x = 0 (4b) 
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~ ( x  0 T(x, t) =k(x, t )~A ,t) _ Ak(x,t) ~x forx = 1 

(4c) 

ATe(x, t) = 0 for t = 0. (4d) 

Similarly, the sensitivity problem for ATe can be 
derived as 

~zxr,~(x, 0_~ , ~ r ( x ,  t) + c~Ar~(x ,  t) ~9 k(x, t) = 

• f o r 0  < x < 1 (5a)  

aATc(x, t) 
- 0  f o r x = 0  (5b) 

~?x 

Itf 
7', = ~ (TT- Y3ATT(P~,) dt (Sa) 

=0i=1 

~2 = ~ [ATT(PD] 2 dt (Sb) 
=01=1 

7"3 = ~ (T'; -- Y~)ATT(P~) dt (8c) 
=oi=l 

~4 = ~ [ArT(e~)l ~ dt (8d) 
=0i=1 

~r = AT'~(P2IAT'](P"c) dt. (8e) 
=01=1 

aAr,~(x, t) 
~x 

- -  - 0  f o r x =  1 

ATc(x,t) = 0  f o r t = 0 .  (5d) 

The functional J(/~+~,d "+~) for iteration n + l  is 
obtained by rewriting equation (2) as 

= [ri(k --flkPk, C'" 
J t=oi=l  

_fl~,p~)_ y,]2 dt (6a) 

where we replaced/~,+1 and (~"+l by the expression 
given by equations (3a) and (3b). If  temperature 
Ti(l~-flT~PT~, C;"-fl~,P"c) is linearized by a Taylor 
expansion, equation (6a) takes the form 

j(/~n+l ~n+ 1) itt" ~ 
= [ T , ( ~ " ,  ~" ° ° " C ) -/~AT~ (P~) 

d,=O i=l 

-fl~cAT'](P"c)- y~]2 dt (6b) 

where ATT(P~) - AT"k(xi, t) and AT,"(P~) -= 
AT"c(xi, t), and Ti(/~, C") is the solution of the direct 
problem by using the estimates of/~(x, t) and C(x, t) 
for exact k(x, t) and C(x, t) at x = xi. 

The sensitivity functions AT~(PT,) and AT~(P~) are 
taken as the solutions of equations (4) and (5) at the 
measured positions x = x~ by letting Ak = P~, and 
AC = P~ respectively [17]. The search step sizes fl~ 
and fl~ are determined by minimizing the functional 
given by equation (6b) with respect to fiT, and fl~. 
respectively. Finally the following expression results : 

where 

6. ADJOINT PROBLEM AND GRADIENT 
(5c)  EQUATION 

To derive the adjoint problem for k(x, t), equation 
(la) is multiplied by the Lagrange multiplier (or 
adjoint function) 2(x, t) and the resulting expression 
is integrated over the time and corresponding space 
domains. Then the result is added to the right-hand 
side of equation (2) to yield the following expression 
for the functional J[k(x, t), C(x, t)] : 

J[k(x, t), C(x, t)] = (T~- Y3 2 dt 
=0i=1 

(9) 

The variation AJk is obtained by perturbing T by 
ATk in equation (9), subtracting from the resulting 
expression the original equation (9) and neglecting the 
second-order terms. We thus find 

AJk = 2 ( T , -  rl)AT,(P~)dt 
=0 

+2 (rm- Y~)Ar~(P~) dt 
=0 

+2 f =o 3~=oC~ ~'i=~ (T-- Y)AT(Pk)6(x-xi)dt dx 

OT(x,t)~ C OArk(x,t)l 
+ ~x(Ak(x' t)-~7-x } - ~7 j dtdx 

(7a) (10) 

where 6 ( x -  xi) is the Dirac delta function and xi, i = 2 
to m -  1, refer to the internal measured positions. In 

(7b) equation (10), the second double integral term is inte- 
grated by parts; the initial and boundary conditions 
of the sensitivity problem given by equations (4b)- 
(4d) are utilized and then AJk is allowed to go to zero. 
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The vanishing of the integrands containing A Tk leads 
to the following adjoint problem for the determination 
of 2(x, t) : 

~ [  . a ~ ( x , 0 3  %1 
k(x, t)-~-x/+ L 2(T- Y)a(x-x,) 

J i = 2  

a[C(x, t),~(x, t)] 
+ = 0  f o r 0 < x <  1 ( l l a )  

Ot 

g,~(x, t) 
- k ( x , t )  Ox - - 2 ( T , - Y 1 )  f o r x = 0  ( l i b )  

O2(x, t) 
k(x , t )  a ~ - - 2 ( T ' - - Y m )  f o r x =  1 ( l lc )  

2 ( x , t ) = 0  f o r t = t f .  ( l l d )  

This adjoint problem is different from the standard 
initial value problems in that the final time condition 
at time t -- tf is specified instead of the customary 
initial condition. However, this problem can be trans- 
formed to an initial value problem by the trans- 
formation of the time variables as z = t f - t .  Then 
standard techniques can be used to solve the above 
adjoint problem. 

Finally, the following integral term is left 

AJk=  f l f  f=0- [_~02(x't) c3T(x't)] A k ( x ' t ) d t d x ~ x  c3x 

(12a) 

For k = k(x, t) e L2 . . . . . .  x e [0,1] and t ~ [0,tf], from 
the definition used in [10], we have 

f'l Itf AJk = J'k(X, OAk(x, t) d tdx .  (12b) 
0 = 0  

Then the function J'k(X, t) is called a gradient of 
functional for determining k(x, t). A comparison of 
equations (12a) and (12b) leads to the following 
expression for tke gradient J'k(X, t) of the functional 
J :  

O2(x, t) OT(x, t) 
J'k(X, t) = 63 x OX (12C) 

Similarly, to derive the adjoint problem for C(x, t), 
equation (1 a) is multiplied by the Lagrange multiplier 
(or adjoint funclion) A(x, t) and the same procedure 
as described before is followed. Eventually we find 
that the adjoint equation for estimating C is identical 
to the adjoint equation for estimating k [15]; this 
implies that the adjoint equations need to be solved 
only once, since 2 = A. Finally the gradient equation 
of the functional for determining C(x, t) can be 
obtained as 

OT(x, t) 
J~(x, t )  = --2(x, t )  ~ -  (12d) 

We note that J'(x,  tf) always equals zero since 
2(x, t f )=  0.0, therefore if the final time values of 
k(x, tf) and C(x, tf) cannot be predicted before the 
inverse calculation, the estimated values of k(x, t) and 
C(x, t) will deviate from the exact values near the final 
time condition [10]. This is the case in the present 
study! Generally speaking, there are two methods to 
avoid such a singularity, one is to use the modified 
conjugate gradient method [1 1] and the other one is 
to record data a little longer than the actual period of 
interest. 

However, in the present study we find an alternative 
method to satisfy this requirement, i.e. if we let 
2(x, tf) = 2(x, t f -At )  ~ 0, where At denotes the time 
increment for use in the finite-difference calculation, 
the singularity at t = tf can be avoided and a reliable 
inverse solution can be obtained. We should note that 
the above-stated approach might only be good for this 
specific problem, since it relates strongly to the form 
of the gradient equation! 

7. STOPPING CRITERION 

If the problem contains no measurement errors, the 
traditional check condition is specified as 

J[~+ l (x, t), C"+ l (x, t)] < e (13) 

where e is a small specified number. However, the 
observed temperature data will contain measurement 
errors. Therefore, we do not expect the functional 
equation (2) to be equal to zero at the final iteration 
step. Following the experience of the authors [10- 
1 5], we use the discrepancy principle as the stopping 
criterion, i.e. we assume that the temperature residuals 
may be approximated by 

T i -  Yi "~" a (14) 

where a is the standard deviation of the measurements 
and is assumed to be a constant. The above assump- 
tion was also made by Tikhonov and Arsenia [18] in 
order to find the optimal regularization parameter. 
Substituting equation (14) into equation (2), the fol- 
lowing expression is obtained for e : 

e = maZtf. (15) 

Then, the stopping criterion is given by equation 
(13) with e determined from equation (15). 

8. RESULTS AND DISCUSSIONS 

To illustrate the validity and accuracy of the con- 
jugate gradient method in simultaneously predicting 
k(T)  and C(T) with inverse analysis from the knowl- 
edge of transient temperature recordings, we consider 
a specific example where the exact functional form of 
thermal conductivity is assumed to be the com- 
bination of the sinusoidal and exponential functions 
while heat capacity per unit volume is taken as a 
second-order polynomial with temperature as the 
dependent variable, i.e. 
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k(T) = K 0 + K i  xexp +K3 x sin (16a) 

C(T) = Co+Cj x T+C2 x T 2 (16b) 

where the constants K0, K~, Kz, K3 and /£4 for k(T) 
are taken as 1, 4.5, 80, 2.5 and 3 respectively, and the 
constants Co, Cj and C2 for C(T) are chosen as 1.2, 
0.02 and 0.00001, respectively. The material has initial 
temperature To = 1, when t > 0, and two boundaries 
are subjected to a constant heat flux, q~ = 17 and 
q2 = 6 respectively. The exact functions for k(T) and 
C(T) in terms of k(x, t) and C(x, t) within the total 
space and time domain are sketched in Figs. 2(a) and 
2(b), respectively. The objective of this article is to 
show the applicability of the present approach in mea- 
suring k(T) and C(T) accurately with no prior infor- 
mation on the functional form of the unknown quan- 
tities, which is the so-called function estimation. 

In order to compare the results for situations involv- 
ing random measurement errors, we assume normally 
distributed uncorrelated errors with zero mean and 
constant  standard deviation. The simulated inexact 
measurement data Y can be expressed as 

Y =  Ye×ac, + ~0~ (17) 

where Yox~ct is the solution of the direct problem with 
the exact values of k(T) and C(T) ;  ~r is the standard 
deviation of the measurements ; and ~o is a random 
variable that is generated by subroutine D R N N O R  
of the IMSL [19] and will be within -2 .576  to 2.576 
for a 99% confidence bounds. One should note that, 
when generating simulated measurement temperature 
Y, exact k(T) and C(T) are used in the direct problem 
and thus the problem is nonlinear and the iterative 
technique is needed for its solutions. However, in the 
inverse calculation, the thermal conductivity and heat 
capacity exist in the form of k(x, t) and C(x, t), so the 
problem becomes linear and the estimated tem- 
perature can be calculated directly. 

The space and time increments are taken as 
Ax = 0.1 and At = 0.02 respectively, in the finite- 
difference calculations ; the total measurement time is 
chosen as tf = 1.2; thermocouple spacing Dx equals 
the finite-difference spacing Ax and measurement time 
step Dt is taken the same as At, therefore a total 
of 660 discrete numbers of k(x, t) and 660 discrete 
numbers of C(x, t) are to be estimated simultaneously 
in the inverse calculations. We now present below the 
numerical experiments in simultaneously determining 
k(T) and C(T) by the inverse analysis. 

One of the advantages of using the conjugate gradi- 
ent method is that the initial guesses of the unknown 
quantities can be chosen arbitrarily. However, this is 
not valid in the present study. The reason is because 
two unknown functions, k(x, t) and C(x, t), are to be 
estimated simultaneously by using only the measure- 
ment temperature Y(x, t), which implies that the esti- 
mated temperature T(x, t) obtained by utilizing any 
combinat ion ofk(x,  t) and C(x, t) could possibly equal 

Y(x, t), but the estimated thermal properties are not 
the correct ones. 

In order to restrict the region of search directions 
to obtain the correct inverse solutions, a good initial 
guess of either thermal conductivity, k(x, t), or heat 
capacity, C(x, t), should be given prior to the inverse 
calculations. Fortunately,  good initial guesses for heat 
capacity, C°(x, t), can be obtained from the following 
energy balance equation 

f/' [q(ti+~) -q((j)JAt = C(tj)[T(x, tj+~) - T(x, tj)] dx 
= 0  

(18) 

where q = q~-q2; J represents the time index; At 
denotes the time increment for use in the finite-differ- 
ence calculation and C(tj) is an averaged value for 
heat capacity at t = tj. Therefore good initial guesses 
for heat capacity are obtained as C°(x, t) = C(t). 

Once good initial guesses of heat capacity are 
obtained, the procedure for the inverse calculation 
can be as follows. Firstly, by fixing this good initial 
guess of heat capacity, C°(x, t), the thermal conduc- 
tivity,/~(x, t), with any arbitrary initial guess can be 
calculated to approach the exact k(x, t) in the inverse 
algorithm within a few iterations. Secondly, by using 
those good but not accurate values of k(x,t) and 
C(x, t) in the conjugate gradient method, the thermal 
properties can be refined and accurate inverse solu- 
tions for k(x, t) and C(x, t) are thus obtained. In all 
the test cases considered here, the initial guesses of 
/~(x, t) used to begin the iteration are taken as 
/~°(x, t) = 10 8. 

The estimated functions of k(x,t) and C(x, t), 
obtained when using exact measurements, cr = 0.0, are 
shown in Figs. 3(a) and 3(b) respectively. The value 
of functional J obtained in such a case can be 
decreased to a very small number  as the number  of 
iterations is increased. The comparison between Figs. 
2 and 3 shows that the inverse analysis with the con- 
jugate gradient method in simultaneously measuring 
k(x, t) and C(x, t) is now accomplished. 

Next, the dimensionless measured temperature with 
errors a = 0.001 and ~r = 0.005 are obtained accord- 
ing to equation (17) which represent a maximum tem- 
perature rise of about  0.02% and 0.1% respectively. 
The inverse solutions using these inexact measure- 
ments as the simulated temperature measurements are 
shown in Figs. 4 and 5, respectively. In order to show 
k(T) and C(T) more explicitly as functions of  tem- 
perature, T, the thermal conductivity and heat 
capacity per unit  volume at x = 0.5 with measurement 
errors ~ = 0, 0.001 and 0.005 are presented in Figs. 
6(a) and 6(b) respectively. As expected, increases in 
the measurement errors cause decreases in the accu- 
racy of the inverse solution. 

The average relative error between the exact and 
estimated values for k(x, t) and C(x, t) are listed in 
Table 1 and such an error is defined as 
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(a) 

(b) (b) 

Fig. 2. (a) The exact function of k(T) ; (b) the exact function 
of C(T). 

Fig. 4. (a) The estimated function of  k(T) with cr = 0.001 ; 
(b) the estimated function of  C(T) with tr = 0.001. 

(a) 

(b) 

Fig. 3. (a) The estimated function of  k(T) with a = 0.0; (b) 
the estimated function of C(T) with tr = 0.0. 

(a) 

-%W..~ - 

(b) 
m 

Fig. 5. (a) The estimated function of k(T) with a = 0.005 ; 
(b) the estimated function of C(T) with a = 0.005. 

k . . . . .  = ) / (nxm)  x 1 0 0 %  

(19a) 

IC(x,,,k-C(x,, 01 /. 
C e  . . . .  = - - - -  - -  t n X m) x 100% 

(19b) 

where  m and  n r ep resen t  the  to ta l  discrete  n u m b e r  o f  
pos i t ion  a n d  t ime increments ,  respectively.  Table  1 
a lso  s h o w s  the  n u m b e r  o f  i t e ra t ions  a n d  C P U  t ime 
used  on  a VAX-9420  c o m p u t e r  for  s imul taneous ly  
m e a s u r i n g  k(x, t) a n d  C(x, t). Indeed ,  the  necessary  
C P U  t ime is wi th in  1.4 a n d  4.46 s in e s t ima t ing  
660 u n k n o w n  discrete  n u m b e r s  o f  k(x,t) a n d  660 
u n k n o w n  discrete  n u m b e r s  o f  C(x, t), this  s h o w s  tha t  
the  speed o f  conve rgence  is very  fast! 



3440 C.-H. H U A N G  and  J.-Y. Y A N  

(a) 

(b) 

9 . 0 0  
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5 . 0 0  - 
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Z~ 

Exact 

• ~ , =  a o  

~ =  ~ool 2 

~ G =  0.0C15 

' I ' I ' 
4.00 8.00 
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1 2 . 0 0  

1 . 4 5  

1 . 4 0  - 

r,,) 1 . 3 5  - 

~ 1.30 - 

1 . 2 5  - 

1.20 

0.00 

Exact 

e o'= 0.0 

c~= 0.0131 

/ ~  ~ =  0.005 

. /  
/ 

:/  
A 

' I ' I ' 
4 . 0 0  & O 0  1 2 . 0 0  

Temperature,  T 

Fig. 6. (a) The  exact  and  es t imated  values  of  k (T)  a t  x = 0.5 ; (b) the exact  and  es t imated  values  of  C(T) 
at  x = 0.5. 
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Case: k(T) = K0+KI xexp(T/K2)+K3 ×sin(T/K4); C(T) = Co+Cl x T+C2 x T 2 

Measurement error, G 
VAX-9420 

Stop criterion Number of iterations CPU time (s) 

Average relative 
error % 

Corror ke,or 

0.000 
0.001 
0.005 

1.00 E-008 148 4.46 
1.32 E-005 57 2.28 
3.20 E-004 26 1.40 

0.69 0.510 
0.706 1.502 
1.026 4.101 

9. CONCLUSIONS 

The conjugate', gradient  me thod  with the adjoint  
equa t ion  was successfully applied for the solut ion of  
the inverse prob]Lem to determine s imultaneously the 
t empera tu re -dependent  thermal  conductivi ty,  k(T)  
and  heat  capacity per  uni t  volume, C(T).  Several test 
cases involving different measurement  errors were 
considered. The results show tha t  the conjugate  gradi- 
ent  me thod  does not  require a priori in format ion  for 
the funct ional  forms of  the u n k n o w n  quanti t ies  and  
needs very shor t  C P U  time on  a VAX-9420 to per form 
the inverse calculations.  
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